
Journal of Geometry and Physics 36 (2000) 178–197

Berry phase in magnetic systems with
point perturbations

Pavel Exnera,b,∗, Vladimir A. Geylerc
a Nuclear Physics Institute, Academy of Sciences, 25068Řež near Prague, Czech Republic
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Abstract

We study a two-dimensional charged particle interacting with a magnetic field, in general non-
homogeneous, perpendicular to the plane, a confining potential, and a point interaction. If the latter
moves adiabatically along a loop, the state corresponding to an isolated eigenvalue acquires a Berry
phase. We derive an expression for it and evaluate it in several examples such as a homogeneous field,
a magnetic whisker, a particle confined at a ring or in quantum dots, a parabolic and a zero-range one.
We also discuss the behavior of the lowest Landau level in this setting obtaining an explicit example
of the Wilczek–Zee phase for an infinitely degenerated eigenvalue. © 2000 Elsevier Science B.V.
All rights reserved.

MSC:81Q05; 81V99

Sub. Class.:Quantum mechanics

Keywords:Berry phase

1. Introduction

A non-trivial Berry phase [4] can be demonstrated in different situations. There is a
growing interest recently to this effect in mesoscopic systems (see, e.g., [22,24] and refer-
ences therein). These papers investigate theoretically and experimentally how the phase is
manifested in quantum dynamics of a particle with spin interacting with a time-dependent
magnetic field. In the present paper, we are going to discuss a simple model in which the
Berry phase emerges even if the spin–orbital coupling is neglected.
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The model describes a charged particle confined to a potential well and placed into a mag-
netic field of constant direction, which is independent of time and may be homogeneous.
The phase will appear when the well is moving adiabatically. A similar situation appears in
the Born–Oppenheimer approach for the study of molecules (see, e.g., [17] and references
therein) and impurities in semiconductors [30]. For the sake of simplicity, we suppose that
the well represents a zero-range interaction, i.e., it is given by a point interaction in the
plane. This makes it possible to derive explicit formulae for the Berry potential. The idea of
employing point interactions to this purpose is not new: some solvable models exhibiting
a non-trivial Berry phase have been constructed earlier. For instance, the geometric phase
resulting from a cyclical motion of the boundary condition for the Dirac and Schrödinger
equations on an interval [0, `] was computed in [7,16]. On the other hand, Cheon and Shige-
hara [9] investigated the Berry phase which arises when a pointlike scatterer is adiabatically
moved in a rectangular billiard in such a way that the energy levels encircle a “diabolic point”.

In our cases, the results are simpler and rather illustrative. In particular, we shall show
that moving the zero-radius potential well–defined in accordance with [1,31]–along a closed
curve in the plane, the eigenfunctions of a particle trapped by the well and exposed to a
homogeneous field perpendicular to the plane acquire a phase which coincides with the
number of magnetic field quanta through the area restricted by the curve. This picture
changes if an additional confining potential is added, say, in the form of an annular potential
“ditch”. In the limiting case of an infinitely thin ring, the motion of the point interaction
induces a geometric phase which differs from the above one on a quantity proportional to
the persistent current in the annulus. Recall that persistent currents in a ring with a point
perturbation were investigated (see, e.g., [8]), but the relation to the Berry phase was not
noticed.

Let us describe briefly the contents of the paper. In the next section, we shall recall briefly
how the zero-range interaction in a magnetic system is constructed and how its spectrum
is determined by means of the Krein’s formula. For simplicity, we suppose always that the
magnetic field as well as the possible confining scalar potential are rotationally symmetric.
The central part of the paper is Section 3, where we derive a general expression for the Berry
potential corresponding to a point interaction moving along a smooth curve (cf. Eq. (3.18)).

This result is illustrated on a number of examples in the next section. We show that
the Berry phase for the perturbation moving along a closed loopC in a homogeneous
field without a scalar potential is proportional to the number of flux quanta throughC.
In distinction to that, the phase corresponding to a magnetic whisker contains an extra
term proportional to the persistent current in the loopC. For comparison, we analyze an
electron confined to a circular ring and find the same Berry phase expression containing the
persistent-current term, in this case independently of the field profile. Finally, we discuss
a harmonic quantum dot in a homogeneous field. We show that if the point interaction is
strong, the effect of the confining potential is small and the Berry phase is again given by
the number of the flux quanta throughC, up to an error term. We compare this with the
situation, where the quantum dot itself is zero-range.

The behavior of degenerate eigenvalues under adiabatic change of parameters is more
complicated and less understood. In the final section, we address this question in the present
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setting and discuss what happens in this situation with the lowest Landau level. We compute
the generalized Berry potential which determines the corresponding Wilczek–Zee phase,
and find the latter for adiabatic evolution around a small loop. It appears to be non-trivial
for the angular momentumm = 1, while the states with higher momenta are not affected.
Moreover, the phase which arises here differs in sign from the one corresponding to the
isolated energy level; we explain this effect as a sort of topological charge conservation.

2. Magnetic systems with a point perturbation

As indicated above, we shall consider a charged particle of chargee and massm∗ (which
may be thought of as the effective mass of an electron in a crystal) living in the plane
with Cartesian coordinatesx, y and exposed to a magnetic field perpendicular to the plane,
B = B(x, y)ez. We also assume that the particle may be confined to a part of the plane
by a non-negative potentialW . The main simplifying assumption we shall make concerns
the rotational symmetry: we suppose that there is a system of polar coordinatesr, ϕ such
that the magnetic field and the confining potential depend on the radial coordinate only,
B = B(r) andW = W(r). In this case one can choose a gauge in such a way that the radial
component of the vector potential vanishes,Ar(r, ϕ) = 0, andAϕ(r, ϕ) = Aϕ(r) depends
on r only. In particular,∇A = 0.

It is convenient to single out the uniform component of the magnetic field,B = B0 + B1

with B0 being a fixed vector. Of course, such a decomposition is arbitrary, but, mostly we
will have in mind situations whenB has a finite limit asr → ∞; then the non-uniqueness is
removed by the requirementB1 → 0. We shall also employ the corresponding decomposi-
tion of the vector potential,A = A0 + A1. In view of the assumed symmetry, it is natural to
use the circular gauge,A0(r) = 1

2B0reϕ . As for the non-constant part, we are particularly
interested in the example of an infinitely thin Aharonov–Bohm solenoid, or a magnetic
flux line with A1ϕ(r) = 8/2πr, where8 is the magnetic flux through the solenoid. It is
convenient to use a dimensionless parameterη, η = 8/80, where

80 = 2π~c

|e|
is the magnetic flux quantum; soη is the number of quanta carried by the solenoid. The
corresponding magnetic field is concentrated at the origin of the coordinates,B1 = 8δ(r)ez.

In the following considerations, however, we assume only thatA1ϕ is a smooth function of
the variabler on the half-line(0,∞). Under the stated assumption, the particle Hamiltonian
has the following form:

H = 1

2m∗

(
−i~∇∇∇ − e
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The potentialW is non-negative by assumption, and thereforeH is a well-defined self-adjoint
operator, which can be understood, e.g., as the Friedrichs extension of the operator defined
onC∞

0 (R
2 \ {0}) by the RHS of Eq. (2.1).

Now we shall introduce a point perturbation of the above Hamiltonian located at a point
s ∈ R2 with the polar coordinates(ρ, θ). (Further we will assume thats 6= 0 if A1 has a
singularity at the pointr = 0.) The perturbed operatorHα,s is conventionally obtained as a
self-adjoint extension of the symmetric operatorS which is a restriction ofH to the domain

D := {ψ ∈ D(H) : ψ(s) = 0}, (2.2)

since the deficiency indices ofS are (1,1), the extensions are characterized by a single
parameterα. Under rather general assumptions about the Hamiltonian [15], the Green’s
functionGα,s(r , r ′;E) of Hα,s is given by the Krein formula

Gα,s(r , r ′;E) = G(r , r ′;E)− [Q(E; s)+ α]−1G(r , s;E)G(s, r ′;E), (2.3)

whereQ(E; s) is the so-called KreinQ-function or renormalized Green’s function at the
diagonal point(s, s),

Q(E; s) := lim
r→s

[
G(r , s;E)− m∗

π~2
ln |r − s|−1

]
, (2.4)

andα is the mentioned parameter. The latter is related to the scattering lengthλ of the point
interaction by the formula

α = m∗
π~2

ln λ−1. (2.5)

Less formally, the point perturbation at a points may be defined via the Fermi pseudopo-
tential of the form

µδ(r − s)(1 − ln |r − s|(r − s)∇r ), (2.6)

where the coupling constantµ is related to the parameterα byµ = α−1.
Under rather weak regularity requirements on the potentialsA(r) andW(r), the Green’s

function is of the form

G(r , r ′;E) = m∗
π~2

ln |r − r ′|−1 +G0(r , r ′;E), (2.7)

whereG0 is continuous in the variablesr , r ′ and analytic with respect toE in the resolvent
set,C \ σ(H), of the free operator. It is the case, e.g., ifA1 andW are smooth functions
(see, e.g., [3], Chapter III, Theorem 5.1). IfA1 has a singularity at the origin, then every
point r , r 6= 0, has a neighborhood such that Eq. (2.7) is true forr ′ in this neighborhood.

Since the singular term in Eq. (2.7) is energy independent,∂G/∂E needs no renormal-
ization and we have

∂Q(E; s)
∂E

= ∂G

∂E
(s, s;E). (2.8)

Due to the well-known Weyl theorem, the essential spectra ofH andHα,s coincide. As for
the discrete spectrum, it may happen thatH andHα,shave a common eigenvalue. LetE be an
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isolated eigenvalue ofH such that there exists a corresponding eigenfunctionψ satisfying
ψ(s) = 0 (in particular, this can be always achieved ifE is a degenerate eigenvalue). Then
E belongs to the spectrum ofHα,s as an isolated eigenvalue; moreover, the multiplicitym′

of E in the spectrum ofHα,s obeys the inequalitym′ ≥ m− 1, wherem is the multiplicity
of E in the spectrum ofH . This assertion may be proven following the arguments from
[10], where a special case of our claim has been considered. In addition, the spectrum of
Hα,s contains all solutions of the equation

Q(E; s)+ α = 0 (2.9)

(the true levels of the zero-range well). Every solution of this equation lies in a gap of
the unperturbed spectrum and is a simple isolated eigenvalue ofHα,s. The corresponding
eigenfunctionψ has the form

ψ(r ) =
[
∂Q

∂E
(E, s)

]−1/2

G(r , s;E). (2.10)

Recall that in the real part of the resolvent set, the derivative is positive,(∂Q/∂E)(E) > 0
for E ∈ R \ σ(H) (cf. [20]). Therefore, Eq. (2.10) has at most one solution in every gap of
the spectrumσ(H). Generally speaking, Eq. (2.9) may have no solutions (see, e.g., [2]). It
is straightforward to see that ifE0 is an isolated eigenvalue ofH andψ(s) 6= 0 holds for
at least one eigenfunction corresponding toE0, thenE0 is a pole of the functionQ(·; s).
Hence ifσ(H) is purely discrete, solutions of Eq. (2.10) exist in infinitely many spectral
gaps.

A simple but important particular case of the considered problem,A1 = 0 andW = 0,
concerns a free motion in a uniform magnetic field. In this situation, the Green function
acquires the following explicit form:

G(r , r ′;E)= m∗
2π~2

0

(
1

2
− E

~ωc

)
exp

[
−π iξ0r ∧ r ′ − (r − r ′)2

4a2
0

]

×9
(

1

2
− E

~ωc
, 1; (r − r ′)2

4a2
0

)
, (2.11)

where

ωc := |eB0|
m∗c

is the cyclotronic frequency,

ξ0 := eB0

2π~c

is the flux density of the uniform component of the magnetic field,

a0 :=
(
~

m∗ωc

)1/2

= (2π |ξ0|)−1/2 (2.12)
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is the magnetic length, and9 is the Tricomi confluent hypergeometric function (cf. [11]).
TheQ-function now obviously does not depend ons and equals [12,14]:

Q(E) = − m∗
2π~2

[
ψ

(
1

2
− E

~ωc

)
+ 2γ − ln 2 − 2 lna0

]
, (2.13)

whereψ(x) = (ln0(x))′ andγ = −ψ(1) is the Euler constant. Up to a scaling and a
shift in the argument, the behavior ofQ(E) is given by that of the digamma functionψ ;
this shows that in a uniform magnetic field, the zero-range potential with any fixedα ∈ R
induces existence of an energy level on the half-line(−∞, ε0) as well as in each interval
(ε`, ε`+1), whereε` := (`+ 1

2)~ωc are the Landau levels.

3. The Berry phase

Let us return to the condition (2.9). In what follows, we will keepα fixed (and drop it
mostly from the notation) and move the pointsalong a smooth pathC : s = s(t), t ∈ [0,1],
in the planeR2 (or in the punctured planeR2 \ {0} if A1 has a singularity at the point
0) in such a way that Eq. (2.9) has a solutionE0(s, α) lying in a gap of the unperturbed
HamiltonianH . Denote

ψs(r ) =
[
∂Q

∂E
(E0(s, α), s)

]−1/2

G(r , s;E0(s, α)), (3.1)

the corresponding normalized eigenfunction of the perturbed operatorHα,s (see (2.10)).
If the pathC is a closed loop,s(0) = s(1), the initial and final state,ψs(0) andψs(1),
respectively, differ by a phase factor,

ψs(1) = ψs(0)exp

(
− i

~

∫ 1

0
E0(s(t))dt + iγ (C)

)
, (3.2)

where the Berry phaseγ (C) depends only on the pathC; in accordance with Ref. [4], it
equals

γ (C) =
∫
C

V(s)ds, (3.3)

where

V(s) := i〈ψs |∇∇∇s|ψs〉 (3.4)

is the so-called Berry vector potential. Recall that from the differential-geometric point of
view Im 〈ψs |∇∇∇s|ψs〉 is a connection 1-form in a principal fiber bundle overR2 (orR2\{0})
associated with the eigenfunction fibrationψs 7→ s [26]; in other words, this quantity is a
gauge potential with the gauge groupU(1). We shall expressV(s) in the polar coordinates:

V(s) = Vρ(ρ, θ)eρ + Vθ(ρ, θ)eθ (3.5)
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with

Vρ = i〈ψs |∇ρ |ψs〉, Vθ = i

ρ
〈ψs |∇θ |ψs〉. (3.6)

To proceed further, we need more information about the structure of the Green’s function
G(r , r ′;E). First of all, we decompose the state spaceL2(R2) into partial waves, i.e., we
represent it asL2(R+, r dr)⊗L2(S1,dϕ) and perform the Fourier transform on the second
component,L2(S1,dϕ) → `2(Z) with

g 7→ {gm}m∈Z, gm = 1

(2π)1/2

∫ 2π

0
g(ϕ)e−imϕ dϕ. (3.7)

ThenL2(R2) decomposes into an orthogonal sum of subspaces each of which is isomorphic
to the radial component:

L2(R2) ' ∞⊕
m=−∞

L2(R+, r dr). (3.8)

The unperturbed operatorH commutes with rotations around the origin, and therefore it
decomposes correspondingly into the orthogonal sum

H = ∞⊕
m=−∞

Hm, (3.9)

where the partial-wave partsHm are self-adjoint operators inL2(R+, r dr) obtained as the
Friedrichs extensions of the operators (2.1) with the domainC∞

0 (R+, r dr) and−i∂/∂ϕ
replaced bym. It is obvious that eachHm is a real operator, i.e., that it commutes with
the operator of complex conjugation inL2(R+, r dr). It follows that its Green’s function
Gm(r, r

′;E) is real-valued for a realE.
The full Green’s function can be expressed through its partial-wave components as

G(r , r ′;E) = 1

2π

∞∑
m=−∞

eim(ϕ−ϕ′)Gm(r, r
′;E). (3.10)

It follows that〈ψs |∇ρ |ψs〉 is a real number. On the other hand, differentiating the identity
〈ψs|ψs〉 = 1, we see that the real part of〈ψs |∇ρ |ψs〉 (as well as〈ψs |∇θ |ψs〉) vanishes.
Consequently, the radial component of the Berry potentialVρ(s) = 0. To find the angular
one, let us differentiate the identity

(H − E)G(r , s;E) = δ(r − s) (3.11)

with respect to the constant componentB0 of the magnetic field, keepingE andsfixed; this
yields

∂H

∂B0
G+ (H − E)

∂G

∂B0
= 0. (3.12)

Notice that∂G/∂B0 is a smooth function in view of (2.7). Hence〈
G |(H − E)| ∂G

∂B0

〉
=
〈
δ(r − s)

∣∣∣∣∂G(r , s;E)∂B0

〉
= ∂G

∂B0
(s, s;E) = ∂Q

∂B0
(E, s),
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and therefore〈
G

∣∣∣∣ ∂H∂B0

∣∣∣∣G
〉
+ ∂Q

∂B0
= 0. (3.13)

Dividing both terms of this expression by∂Q/∂E and puttingE = E0(s), we arrive at the
relation〈

ψs

∣∣∣∣ ∂H∂B0

∣∣∣∣ψs

〉
+ ∂Q

∂B0

(
∂Q

∂E

)−1

= 0. (3.14)

SinceE0(s) solves Eq. (2.9), the last term at the LHS can be expressed as

∂Q

∂B0

(
∂Q

∂E

)−1
∣∣∣∣∣
E=E0

= −∂E0

∂B0
,

so 〈
ψs

∣∣∣∣ ∂H∂B0

∣∣∣∣ ψs

〉
= ∂E0

∂B0
. (3.15)

Now we shall employ the formula (2.1) which yields

∂H

∂B0
= i

e~

2m∗c
∂

∂ϕ
+ e2B0

4m∗c2
r2 + e2

2m∗c2
rA1ϕ(r). (3.16)

It follows from (3.10) that(∂/∂θ)G(r , s;E) = −(∂/∂ϕ)G(r , s;E), and furthermore, that
Q(E, s) is independent of the angular variable,Q(E, s) = Q(E, ρ). The last claim means
thatE0(s) also does not depend onθ . As a result we have that∇θψs = −∇ϕψs. Finally, we
express the angular momentum operator from (3.16) as

−i
∂

∂ϕ
= −2m∗c

e~

∂H

∂B0
+ πξ0r

2 + (sgne)
2π

80
rA1ϕ(r), (3.17)

which allows us to cast the sought angular component into the form

Vθ(ρ)= 1

ρ

[
−2m∗c

e~

∂E0(s)
∂B0

+ πξ0〈ψs |r2|ψs〉 + (sgne)
2π

80
〈ψs|rA1ϕ(r)|ψs〉

]

= 1

ρ

[
− m∗
π~2

∂E0(s)
∂ξ0

+ πξ0〈ψs|r2|ψs〉 + (sgne)
2π

80
〈ψs|rA1ϕ(r)|ψs〉

]
. (3.18)

We stress that in view of (3.10),Vθ is independent ofθ .

4. Examples

Let us now illustrate the Berry phase behavior on several examples.
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4.1. An homogeneous field

Suppose that the magnetic field is uniform, i.e.,A1 = 0. Since the Green and Krein
functions are explicitly known in this case, it is convenient to evaluate the Berry potential
directly from the relation (3.4). It follows from (2.11) thatψs is of the form

ψs(r ) = exp[−π iξ0(r ∧ s)]f (|r − s|), (4.1)

and therefore

∇θψs(r )= −π iξ0 rρ(cosϕ cosθ + sinϕ sinθ)exp[−π iξ0(r ∧ s)]f (|r − s|)
+exp[−π iξ0(r ∧ s)]∇θf (|r − s|). (4.2)

Inspecting the explicit form of the functionf , we see that it is real-valued and normalized,
‖f ‖2 = 1. It follows that

〈ψs|exp[−π iξ0(r ∧ s)]∇θ |f 〉 = 〈f |∇θ | f 〉 = 1
2∇θ‖f ‖2 = 0,

so the sought quantity is given by the first term only:

〈ψs|∇θ |ψs〉 = −π iξ0

∫
R2

r · s|f (|r − s|)|2 dr = −π iξ0

∫
R2
(s2 + r · s)|f (|r |)|2 dr

= −π iξ0

(
ρ2
∫
R2

|f (|r |)|2 dr + ρ

∫
R2
r(cosϕ cosθ

+sinϕ sinθ)|f (|r |)|2 dr
)
. (4.3)

The first integral obviously equals 1 and the second 0, hence

Vθ(ρ) = i

ρ
〈ψs|∇θ |ψs〉 = πξ0ρ (4.4)

and the Berry phase is given by

γ (C) = 2πξ0S, (4.5)

whereS is the area encircled by the loopC. We can write it also as

γ (C) = 2π sgne
8C

80
, (4.6)

where8C is the full magnetic flux through the loop. Comparing (4.4) which corresponds
to A1 = 0 with the general expression (3.18) derived in the previous section, we get in the
limit ρ → 0, the relation

∂E0

∂B0
= m∗

4B0
ω2

c〈ψ0 |r2|ψ0〉. (4.7)

Let us finish the example with a remark concerning an extension of the above result to
three-dimensional systems. Suppose that the field is parallel to thez-axis andB(ρ, ϕ, z) =
B(ρ) holds in the cylindrical coordinates. Then we haveVρ = 0, Vθ = πξ0ρ, andVζ = 0,
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where(ρ, θ, ζ ) are the cylindrical coordinates of the points. Consequently, the Berry phase
along a closed loopC is againγ (C) = 2π8C/80, up to a sign, where8C is now the
magnetic flux through the projection ofC to a plane perpendicular to the field.

4.2. A magnetic whisker

The opposite extreme corresponds to the situation, where the homogeneous component
is absent and the field is concentrated into a flux line (sometimes called Aharonov–Bohm
solenoid), i.e.,B0 = 0 andA1 = (η80/2πr)eϕ . Then (3.18) yields

Vθ(ρ) = − m∗
π~2ρ

∂E0

∂ξ0
+ η

ρ
sgne. (4.8)

Suppose, in particular that the point perturbation moves along a circleC of radiusR centered
at the origin of coordinates. In that case, the Berry phase equals

γ (C) = − 2m∗
~2

∂E0

∂ξ0

∣∣∣∣
B0=0

+ 2π(sgne)η. (4.9)

The total flux8C of the fieldB through the circleC is (πR2ξ0 + η)80. Keeping the flux
8 fixed, we have∂/∂ξ0 = πR280(∂/∂8C). Hence

γ (C) =
[
−2πm∗R280

~2

∂E0

∂8C
+ 2π(sgne)

8C

80

]
B0=0

. (4.10)

Recall that for a particle confined to the loopC, the derivative∂E0/∂8C equals−(1/c)I0,
where I0 is the corresponding persistent current. To understand better the meaning of
Eq. (4.10), we consider the following example.

4.3. Electron in a ring

Up to now the confining potential of (2.1) was trivial. The previous example inspires us
to analyze another extreme situation in whichW is a very deep and narrow well. To get a
solvable model, we employ the usual idealization and suppose that the particle is confined to
an infinitely thin circular ringC pierced by the magnetic field. In that case, the Hamiltonian
H becomes one-dimensional. Having in mind an electron,e < 0, we can writeH as

H = ~
2

2m∗R2

(
−i

∂

∂ϕ
+ η

)2

, (4.11)

whereR is the ring radius and8 = η80 is the total flux of the fieldB through the circle;
the field profile is irrelevant here. The Green and Krein functions are of the form

G(ϕ, ϕ′;E) = m∗R
π~2

∞∑
m=−∞

eim(ϕ−ϕ′)

(m+ η)2 − (2m∗R2/~2)E
, (4.12)
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Q(E; η)= m∗R
π~2

∞∑
m=−∞

[
(m+ η)2 − 2m∗R2

~2
E

]−1

= m∗
~(m∗E)1/2

sin(2πR/~)(2m∗E)1/2

cos(2πR/~)(2m∗E)1/2 − cos 2πη
. (4.13)

Consider now a point perturbation of the operatorH ,

Hθ = H + α−1δ(ϕ − θ). (4.14)

As above the Green’s function forHθ is given by the Krein formula

Gθ(ϕ, ϕ
′;E) = G(ϕ, ϕ′;E)− [Q(E)+ α]−1G(ϕ, θ;E)G(θ, ϕ′;E). (4.15)

A solution to the spectral condition

Q(E)+ α = 0 (4.16)

exists in each interval(Ẽ`, Ẽ`+1), where{Ẽ`}`≥0 is the sequence of “free” eigenvalues

Ẽ(m) = ~
2

2m∗R2
(m+ η)2 (4.17)

arranged in the ascending order. In addition, forα < 0, Eq. (4.16) has a solution also on
the half-line(−∞, Ẽ0).

Consider a fixed solutionE0(θ) of (4.16). It is clearly independent ofθ and represents a
non-degenerate eigenvalue ofHθ with the eigenfunction

ψθ(ϕ) =
[
∂Q

∂E
(E0)

]−1/2

G(ϕ, θ;E0). (4.18)

Let us evaluate the Berry phase when the perturbation siteθ travels once around the ring.
The Berry potential is given by

V (θ) = i〈ψθ |∇θ |ψθ 〉. (4.19)

We expressψθ in the form

ψθ(ϕ) = m∗Rc0
π~2

∞∑
m=−∞

exp[im(ϕ − θ)]

(m+ η)2 − (2m∗R2/~2)E
(4.20)

with c0 := [(∂Q/∂E)(E0)]−1/2. Then

V (θ) = 2m2∗R3c2
0

π~4

∞∑
m=−∞

m

((m+ η)2 − (2m∗R2/~2)E)2
. (4.21)

On the other hand,

∂Q

∂E
(E0) = 2m2∗R3

π~4

∞∑
m=−∞

[
(m+ η)2 − 2m∗R2

~2
E

]−2

, (4.22)
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so

V (θ)=
∞∑

m=−∞

m

((m+ η)2 − (2m∗R2/~2)E)2

×
{ ∞∑
m=−∞

[
(m+ η)2 − 2m∗R2

~2
E

]−2}−1

. (4.23)

Differentiating nowQ with respect toη we get

∂Q

∂η
= −2m∗R

π~2

∞∑
m=−∞

m+ η

((m+ η)2 − (2m∗R2/~2)E)2
(4.24)

which yields the identity

∞∑
m=−∞

m

((m+ η)2 − (2m∗R2/~2)E)2

= − π~2

2m∗R
∂Q

∂η
−

∞∑
m=−∞

η

((m+ η)2 − (2m∗R2/~2)E)2
. (4.25)

In combination with (4.22) and (4.23) this formula gives

V (θ) = −m∗R2

~2

∂E0

∂η
− η (4.26)

and the corresponding Berry phase accumulated whileθ moves once anticlockwise around
C is

γ (C) = −2πm∗R2

~2

∂E0

∂η
− 2πη. (4.27)

Taking into account that the total flux through the ring is8C = η80, we see that the
obtained expression is fully analogous to the formula (4.10) valid in the whisker case.

4.4. A parabolic quantum dot

As the next example of this section, we shall discuss a quantum dot in a uniform magnetic
field B0. To get a solvable model, we suppose that the confining potential which determines
the dot is parabolic,W(r) = 1

2m∗ω2
0r

2. The frequencyω0 is related to the effective radius
R of the dot by

ζ = 1
2m∗ω2

0R
2, (4.28)

whereζ is the chemical potential of the system [5]. The spectrum ofH is discrete with the
eigenvalues (usually called the Fock–Darwin levels)

Emn = ~ω(1
2(|m| + 1)+ n)+ ~ωcn, m ∈ Z, n ∈ N, (4.29)

whereω := (ω2
c + ω2

0)
1/2. We can employ the known propagator kernel [19] of the

operatorH :



190 P. Exner, V.A. Geyler / Journal of Geometry and Physics 36 (2000) 178–197

K(r , r ′; t)= m∗ω
4π i~ sin 1

2ωt
exp

{
im∗ω

4~ sin 1
2ωt

[
(r2 + r

′2) cos1
2ωt

−2r · r ′ cos1
2ωct − 2ir ∧ r ′ sin 1

2ωct
]}
. (4.30)

To find an integral representation of the Green’s functions ofH , one has to perform the
Wick rotation in (4.30), i.e., to pass to the imaginary timet → −it . This yields the heat
kernel of e−tH; applying the Laplace transformation to it we get

G(r , r ′; t)= m∗ω
2π~2

∫ ∞

0
exp

{
2tE

~

}
exp

{
− m∗ω

4~ sinhωt

[
(r2 + r

′2) coshωt

−2r · r ′ coshωct + 2ir ∧ r ′ sinhωct
]} dt

sinhωt
. (4.31)

We shall also need the Krein function. It is obtained by the following trick: we observe that
replacingωc at the RHS of (4.31) byω, we get the Green’s function of the Landau–Hamilto-
nian with the cyclotronic frequencyω. We add and subtract this function at the RHS, then
we subtract the singularity,(m∗/π~2) ln |r − r ′|−1, and pass to the limitr , r ′ → s. In
accordance with (2.13), we obtain

Q(E; s)= m∗ω
2π~2

∫ ∞

0
exp

{
2tE

~

}
exp

{
− m∗ω

2~ sinhωt
ρ2(coshωt − coshωct)− 1

}

× dt

sinhωt
− m∗

2π~2

[
ψ

(
1

2
− E

~ω

)
+ 2γ − ln 2 − 2 lna

]
, (4.32)

wherea := (~/m∗ω)1/2.
We shall not analyze the last expression generally and restrict ourselves to showing that

if the point-interaction is strong enough in the sense thatE0 � −~ω, the confinement
potential has an insignificant effect on the Berry potential only. To this aim, we denote
2E/~ = −ε and split the integralI in RHS of (4.31) into a sumI = I1(ε) + I2(ε) of
integrals corresponding to the intervals(0, ε−1/2) and (ε−1/2,∞). It is easy to see that
the first integral obeys the inequalityI1(ε) ≥ c1(r , r ′)exp[−(ε)1/2] with a constantc1

depending onr andr ′ only. On the other hand, using an integration by parts, we find that
I2(ε) ≤ c2(r , r ′)ε−1exp[−(ε)1/2]. Neglecting for large|E| the second integral, we have

G(r , r ′; t)' m∗ω
2π~2

exp
{
−i
m∗ωc

2~
r ∧ r ′

}

×
∫ ε−1/2

0
exp

{
2tE

~

}
exp

{
−m∗ω

4~t
(r − r ′)2

} dt

t
. (4.33)

Since the integral depends on|r − r ′|2 only, we can repeat the considerations of Section
4.1 obtaining thus

Vθ = πξ0ρ +O(|E|−1
0 ). (4.34)
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4.5. A zero-range quantum dot

The results of the previous section may be better understood by considering the zero-range
limit of the confinement potentialW(r) of the dot. Specifically, let

W(r) = µ0δ(r )(1 − (ln r)r∇r ), (4.35)

in accordance with Eq. (2.6). Then the Green’s function ofH has the form (see (2.3))

G(r , r ′;E) = G0(r , r ′;E)− [Q0(E)+ α0]−1G0(r ,0;E)G0(0, r ′;E), (4.36)

whereα0 = µ−1
0 , G0(r , r ′;E) is given by the RHS of (2.11) andQ0(E) is equal to the

expression at RHS of Eq. (2.13). Hence

Q(s;E) = Q0(E)− [Q0(E)+ α0]−1G2
0(s,0;E), (4.37)

ψs(r )=
(
∂Q(s;E)
∂E

)−1/2 [
G0(r , s;E)−(Q0(E)+ α0)

−1G0(r ,0;E)G0(0, s;E)
]
.

(4.38)

SinceG0(s,0;E) is independent ofθ , we have

∇θψs =
(
∂Q(s;E)
∂E

)−1/2

∇θG0(r , s;E).

Using now the results of Section 4.1, we obtain

〈ψs|∇θ |ψs〉 =
(
∂Q(s;E)
∂E

)−1 [(
∂Q0(E)

∂E

)
(−π iξ0ρ

2)

−(Q0(E)+ α0)
−1G0(0, s;E)〈G0(r ,0;E) |∇θ |G0(r , s;E)〉

]
. (4.39)

It is clear that

〈G0(r ,0;E)|∇θ |G0(r , s;E)〉 = ∇θ 〈G0(r ,0;E)|G0(r , s;E)〉. (4.40)

On the other hand, the scalar product〈G0(r ,0;E)|G0(r , s;E)〉 has the form

〈G0(r ,0;E)|G0(r , s;E)〉 =
∫
R2

exp(−π iξ0r ∧ s)f (|r |)g(|r − s|)dr , (4.41)

and therefore it is invariant with respect to rotations of the vectors around the origin.
Indeed, letT be such a rotation, then∫

R2
exp(−π iξ0r ∧ T s) f (|r |) g(|r − T s|)dr

=
∫
R2

exp(−π iξ0T r ∧ T s)f (|T r |)g(|T r − T s|)dr

=
∫
R2

exp(−π iξ0r ∧ s)f (|r |)g(|r − s|)dr .
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As a result, Eqs. (4.39) and (4.40) lead to the following expression for the non-zero com-
ponent of the Berry potential:

Vθ(ρ) =
(
∂Q(s;E)
∂E

)−1(
∂Q0(E)

∂E

)
(πξ0ρ). (4.42)

Using the asymptotics

Q0(E) = O(ln |E|), G0(s,0;E) = O(|E|−1) as E → −∞,

we see from Eqs. (4.37) and (4.42) that in a deep zero-range well, in the sense thatE0 �
−~ωc, we get

Vθ = πξ0ρ +O(|E|−2
0 ) (4.43)

in accordance with the result (4.34) of the previous example.

5. Wilczek–Zee phase

It was essential in the above considerations that the energy level in question was non-
degenerate. In the opposite case, the behavior of the system with respect to a moving
perturbation is more complex, the degenerate levels may form different linear combinations
and the change includes more than a simple phase factor. Nevertheless, the effect is usually
labeled as the Wilczek–Zee phase [28].

In magnetic systems with a homogeneous field, a prime example of a degenerate eigen-
value are the Landau levels which constitute the spectrum of the unperturbed operator (2.1)
with B1 = 0 andW = 0; they are

ε` = (`+ 1
2)~ωc, ` = 0,1,2, . . . . (5.1)

In this section, we will briefly discuss how the corresponding eigenfunctions behave under
the influence of a moving point interaction.

Let us first observe that the perturbation preserves the Landau levels as infinitely de-
generate eigenvalues. LetL` be the eigenspace ofH referring to an eigenvalueε`. It is
straightforward to see that the eigenspace ofHs corresponding to the same eigenvalue has
the following form

L`(s) = {ψ ∈ L` : ψ(s) = 0}. (5.2)

SinceL` is invariant with respect to translations of the eigenfunctions, it is possible to select
an orthonormal basisψ(`)1 (s), ψ(`)2 (s), . . . , ψ(`)n (s), . . . in L`(s) which depends smoothly
on the points ∈ R2. We suppose thats is adiabatically moving along a smooth closed
contour,s = s(t), t ∈ [0,1], and that at the initial momentt = 0, the system is in a state
ψ
(`)
m (s(0)). Then the stateψ(t) at an instantt is given by the formula

ψ(t) = exp

{
ε`t

i~

}∑
n

U(`)nm(t)ψ
(`)
n (s(t)), (5.3)
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where(U(`)nm(t)) is a unitary matrix generalizing the Berry phase factor eiγ (t) (see [28]). The
role of Berry potential is played by the infinite self-adjoint matrix

V (`)mn(s) = i〈ψ(`)m (s)|∇s|ψ(`)n (s)〉, (5.4)

which is related toU(`)(t) ≡ U(t) by

(U−1(t)U̇ (t))mn = iV (`)nm(s(t)). (5.5)

The solution to Eq. (5.5) along the curveC : s = s(t) is given by the path integral (the
Wilson loop)

U(C) = P exp

(
i
∮
C

V (s)ds
)
, (5.6)

whereP indicates a time-ordered exponential.
The Wilczek–Zee theory has the following differential-geometric interpretation [27].

Consider the trivial vector bundleE` = R2 × L`, thenF` = ∪{{s} × L`(s) : s ∈ R2} is
a subbundle ofE` with the infinite-dimensional typical fiber̀2. Denote bylu(∞) the Lie
algebra of the unitary group of`2 (the Lie algebra of skew-Hermitian infinite-dimensional
matrices). Then it is convenient to regard−iVmn(s) as coefficients of the differential form
ω = ωk dxk assuming values inlu(∞):

ωk = 〈ψ(`)m (s) |∇xk |ψ(`)n (s)〉, s = (x1, x2). (5.7)

This form is a connection form in the bundleF`, and the operatorsU(C) are the holonomy
operators in the principalU(∞)-bundle associated withF`. According to the Ambrose–
Singer theorem [18], the curvature form�,� = dω + ω ∧ ω determines completely the
operatorsU(C) (the tensorFjk = i�jk is the strength of the gauge potentialVk). Notice that
there is an explicit formula (analogous to the Stokes formula) which expresses the RHS of
Eq. (5.6) in terms of the coefficients of� [23]; nevertheless, it is difficult to use this formula
when the components ofω are not commuting (which is the case for the matrices (5.7)).
However, we can gain some insight into the behavior of the Wilczek–Zee phase considering
infinitely small loops. In particular, for such a loopC encircling a points0, the holonomy
operator is given by an ordinary exponential

U(C) = exp(�12(s0)S), (5.8)

whereS is the area encircled by the loopS.
In the following, we shall consider for simplicity the lowest Landau levelε0 and drop

the subscript 0 for the notations. Normalized eigenfunctions of the ground stateL0 may be
chosen in the form [21]

9m(r, ϕ) =
( |ξ0|

2mm!

)1/2

eσ imϕexp

{
−r2

4a2
0

}(
r

a0

)m
, m ≥ 0, (5.9)

whereσ = sgnξ0. The integral kernelP0(r , r ′) of the projection operator onto the subspace
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L0 equals [13]

P0(r , r ′) = |ξ0|e−π iξ0r∧r ′
exp

{
−(r − r ′)2

4a2
0

}
. (5.10)

The conditionψ(s) = 0 can be then written as∫
R2
P0(s, r )ψ(r )dr = 0, (5.11)

and a comparison with (5.9) shows that this is equivalent to

〈[s, ζ ]90|ψ〉 = 0, (5.12)

where [s, ζ ] with s ∈ R2 andζ ∈ S1 denotes the operator of magnetic translation [29]
which acts onf ∈ L2(R2) as

[s, ζ ]f (r ) = ζ exp(−π iξ0r ∧ s)f (r − s). (5.13)

This shows that one can choose a family of functions

ψm(s) = [s,1]9m, k = 1,2, . . . (5.14)

for orthonormal basis inL0(s). Let us calculate the corresponding matrix elementsVmn(s).
It is convenient to perform the calculation in the Cartesian coordinates. Letr = (x, y),

s = (x′, y′); then

ψm(s)(r ) = exp(−π iξ0(xy′ − x′y))9m(x − x′, y − y′). (5.15)

Writing 9m as

9m(x, y) =
( |ξ0|

2mm!

)1/2

exp

{
−(x2 + y2)

4a2
0

}(
x + σ iy

a0

)m
, (5.16)

we find

∂9m

∂x
= − x

2a2
0

9m + 1

a0

(m
2

)1/2
9m−1,

∂9m

∂y
= − y

2a2
0

9m + σ i

a0

(m
2

)1/2
9m−1. (5.17)

Now we obtain from Eq. (5.17):

∂ψm

∂x′ (s)(x, y)= π iξ0yψm(s)(x, y)+ exp(−π iξ0(xy′ − x′y))

×
[
x − x′

2a2
0

9m(x−x′, y−y′)− 1

a0

(m
2

)1/2
9m−1(x − x′, y − y′)

]
,

(5.18)
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∂ψm

∂y′ (s)(x, y)= −π iξ0xψm(s)(x, y)+ exp(−π iξ0(xy′ − x′y))

×
[
y − y′

2a2
0

9m(x − x′, y − y′)− σ i

a0

(m
2

)1/2
9m−1(x−x′, y−y′)

]
.

(5.19)

Hence

〈ψn |∇x′ |ψm〉 = π iξ0y
′δmn + π iξ0〈9n|y|9m〉

+ 1

2a2
0

〈9n|x|9m〉 − 1

a0

(m
2

)1/2
δn,m−1, (5.20)

〈ψn|∇y′ |ψm〉 = −π iξ0x
′δmn − π iξ0〈9n|x|9m〉 + 1

2a2
0

〈9n|y|9m〉

−σ i

a0

(m
2

)1/2
δn,m−1. (5.21)

To find the matrix elements〈9n|x|9m〉 and 〈9n |y|9m〉, we make use of the following
observations: the matrices(i〈ψn|∇x′ |ψm〉) and(i〈ψn|∇y′ |ψm〉) are Hermitian, and at the
same time, the numbers〈9n |x|9m〉and〈9n |y|9m〉are real. Taking these facts into account,
we get from Eqs. (5.20) and (5.21)

i

2a2
0

〈9n |x|9m〉− i

a0

(m
2

)1/2
δn,m−1=− i

2a2
0

〈9n|x|9m〉+ i

a0

(n
2

)1/2
δm,n−1, (5.22)

i

2a2
0

〈9n|y|9m〉+ σ

a0

(m
2

)1/2
δn,m−1=− i

2a2
0

〈9n|y|9m〉 + σ

a0

(n
2

)1/2
δm,n−1. (5.23)

Thus

〈9n |x|9m〉 = 1√
2
a0(

√
n δm,n−1 + √

mδn,m−1), (5.24)

〈9n|y|9m〉 = 1√
2
σ ia0(

√
mδn,m−1 − √

nδm,n−1). (5.25)

Since|ξ0|−1 = 2πa2
0, we have finally

〈ψn|∇x′ |ψm〉 = π iξ0y
′δmn + 1√

2a0
(
√
nδm,n−1 − √

mδn,m−1), (5.26)

〈ψn |∇y′ |ψm〉 = −π iξ0x
′δmn − σ i√

2a0
(
√
nδm,n−1 + √

mδn,m−1). (5.27)

Because the matrices(〈ψn|∇x′ |ψm〉) and (〈ψn|∇y′ |ψm〉) do not commute, it is not easy
to calculate the path integral (5.6), and we turn to Eq. (5.8) to gain some insight into the
behavior of the Wilczek–Zee phase. For this purpose, let us calculate the curvature form
�. Since�jk is skew-symmetric (w.r.t. the indicesjk) it is enough to find the component
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�12. It is clear from Eqs. (5.26) and (5.27) that dω = −π iξ0δmndx1 ∧ dx2. Since the
first terms in Eqs. (5.26) and (5.27) are scalar matrices, in order to findω ∧ ω, we must
have to calculate the commutator of the matrices(

√
2a0)

−1(
√
nδm,n−1 − √

mδn,m−1) and
−σ i(

√
2a0)

−1(
√
nδm,n−1 + √

mδn,m−1) only. As a result we obtain that

�12 = 2π iξ0δ1mδ1ndx
1 ∧ dx2. (5.28)

Therefore, for an infinitely small loopC in the planeR2, the operatorU(C) has the diagonal
matrix

Umn(C) = diag(exp(−2π iξ0S),1,1, . . . ,1, . . . ), (5.29)

whereS is the area encircled by the loopC. Hence during an adiabatic evolution along the
loopC, the stateψ(0)1 with the angular momentumm = 1 is modified by the Berry-like
factor exp(−2π iξ0S); the states with the other angular momentam = 2,3, . . . remain un-
changed. This behavior of the Wilczek–Zee phase is similar to the spectral behavior of the
Aharonov–Bohm Hamiltonian with an infinitely thin solenoid with anomalous magnetic
flux, which is described in analogy with a delta-perturbed Hamiltonian by a self-adjoint
extension of a symmetric operator. Namely, the infinitely thin Aharonov–Bohm solenoid
perturbs only two states with neighbor angular momenta (see, e.g., [6]). Similarly, in the
case of the Wilczek–Zee phase, the point potential changes two states with neighbor an-
gular momenta:m = 0 andm = 1. The opposite signs in (4.5) and (5.29) can be in-
terpreted as a “topological charge conservation”. More specifically, the mappingsR

2 3
s 7→ [s,1]9m, m = 0,1, . . . form a basis section of the vector bundleE0. Formula (5.4)
with m, n ≥ 0 defines a connection in this bundle, and it is easy to show that this con-
nection is flat (i.e., its curvature vanishes). Thus in accordance with the Ambrose–Singer
theorem, all the Wilson loops (5.6) are identity operators, i.e., the “Berry phase” for this
connection is equal to zero. Adding the point potentials of the same strengthα to each
points ∈ R2, we split the bundleE0 into a sum of the line bundleL0 of the eigenfunctions
in the zero-range well and the bundleF0 of the eigenfunctions remaining on the zeroth
Landau level:E0 = L0 ⊕ F0. Eqs. (4.5) and (5.29) show that the sum of Berry phases
related to the summands is still zero. This effect is similar to the Berry phase conservation
in the Born–Openheimer problem [30]. On the other hand, we have here an analogy with
the Novikov formula for the Chern numbers of a sum of vector bundles of magneto-Bloch
functions [25]. In physical terms, the Novikov formula states that the quantized Hall con-
ductivity of a Bloch–Landau band is the sum of conductivities of the all magnetic subbands
of this band. It remains to note that the mentioned Chern numbers are integrals of the
curvature form.
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